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Abstract: The extension rule is a method for solving Boolean Satisfiability (SAT) problems by 
using maximum terms, but it is not mature enough at present. Many efficient local search 
algorithms apply true value assignment search solutions. Based on the relationship between 
extension rules and truth value assignment and some efficient heuristic strategies, this paper mainly 
does the following three aspects: 1) analyze two different methods of extension rule and truth value 
assignment and compare them. On this basis, a local search algorithm based on extension rules 
(LSER) is proposed. 2) Apply configuration checking strategy, propose the greedy search algorithm 
method (GSER) of extension rules. 3) We also improve the GSER by the subScore strategy and the 
clause weighting strategy, and design a new strategy called maximum score upper limit strategy. 
And then a new extension rule method (IGSER) based on greedy local search is proposed. 
Experiments show that the proposed algorithm outperforms the general extension rule inference 
method and algorithm GSER on 3-SAT and CBS SAT instances. 

1. Introduction  
SAT is the first proved NP-complete problem. And almost all NP-complete problems from a 

variety of domains can be transformed into SAT problem. The SAT problem is now widely used in 
the field of artificial intelligence, and many efficient solvers have emerged.  

In 1992 Selman proposed the greedy local search algorithm GSAT [1] for the SAT problem. 
GSAT algorithm proves that the random local search algorithm can effectively solve the SAT 
problem and becomes the groundbreaking algorithm of the random local search algorithm. 

Cai et al. presented configuration strategy in the field of local search algorithm in recent years. 
This strategy is one of the most influential strategies proposed by Chinese in the international SAT 
competition [2-7]. In 2011, Cai et al. used configuration strategy for the local search for the SAT 
problem for the first time, and the designed SWCC achieved amazing results [2]. Subsequently, 
based on the strategy of configuration, Cai et al. successively designed many powerful solvers such 
as SWCCA [3], CCASat [4], CScoreSAT [5], CCAnr [6] and CSCCSat [7]. The configuration 
strategy has greatly improved the performance of the SAT local search algorithm. 

 In 2003, Lin et al. proposed a new rule of automatic reasoning, called extension rule [8]. Martin 
Davis, an expert in artificial intelligence, regards it as a "complementary" reasoning method, which 
shows that this method has been widely recognized all over the world. 

Yang et al. proposed a new extension rule reasoning method based on local search, applying local 
search to extension rules, and constructing an incomplete reasoning framework based on extension 
rules for the first time [9]. On this basis, this paper proposes LSER, GSER, IGSER algorithm by 
using some existing local search strategies and some new strategies, hoping to further improve the 
efficiency of SAT problem. 

2. Preliminaries 
In this section, we will introduce the basic concepts, including SAT problem, extension rule, etc. 
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2.1 Basic concept of the SAT problem 

Definition 1 (CNF formula): Give a set of n Boolean variables X = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, a literal is 
either a Boolean variable x or its negation ¬x. A clause is a disjunction of literals. A Conjunctive 
Normal Form (CNF) formula F = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧. . .∧ 𝐶𝐶𝑚𝑚 is a conjunction of clauses. For a literal v ∈  X, 
we use 𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖 , 𝑣𝑣) to represent the truth value of variable v in 𝐶𝐶𝑖𝑖. 

Definition 2 (SAT problem): The Boolean satisfiability problem (SAT) is to find a set of truth 
assignment so that all clauses in a CNF formula F can be satisfied. 

2.2 Extension rule 

 Definition 3 (Extension rule) [8]: Given a clause C and a variable set X, D = {C ⋁ x, C⋁¬x} 
where x is a variable that doesn’t appear in C and x ∈ X. At this time we call the operation 
proceeding from C to D is using the extension rule on C. D is the result of using the extension rule 
on C. 

 Obviously, the clause C is logically equivalent to the result D in truth assignment. 

2.3 Comparison of extension rule with truth assignment 
Applying extension rule to solve the SAT problem is to find a non-expandable maximum term for 

all clauses, that is, to find a truth value assignment, so that the truth value assignment has at least one 
variable with different values for each clause. Using truth value assignment to determine whether the 
SAT problem is satisfiable is to find a true value assignment with at least one variable having the 
same value for each clause. We can find that the two thoughts are just opposite but equivalent. 
Therefore, many heuristic strategies applied in the truth assignment algorithm can also be applied to 
the extension rule. 

2.4 Local Search 
Although the local search algorithm has many shortcomings in principle, such as the possibility of 

falling into the local best, it is still simple and effective. 
Applying the idea of classical local search algorithm, Yang proposed a framework of local search 

algorithm based on extension rules, as follows [9]: 
Algorithm Local Search in Extension Rule (LSER) [9] 
Input: CNF formula F = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧. . .∧ 𝐶𝐶𝑚𝑚 
      maxTries 
Output: Non-expandable maximum term T = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} 
  or no solution found 
1. attempt ← 0 
2. T ← randomly generated maximum term 
3. WHILE attempt < maxTries DO 
4.    IF CanBeExpand(T, F) 
5.    THEN T ← Transform(T) 
6.        attempt++ 
7.    ELSE 
8.        RETURN T 
9. RETURN "no solution found" 
Among them, the function "Transform" is the neighborhood conversion function of local search, 

and the neighborhood is 1 neighborhood, that is, only two maximum terms with one different value 
of variables are adjacent; the objective function is the number of non-expandable clauses under the 
value of the current maximum term. If the objective function takes the value m (the number of 
clauses), then the maximum term T is directly returned. 
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2.5 Configuration checking [4] 
Definition 4 (configuration)[4]: Given a CNF formula F and an truth assignment α, the 

configuration of a variable x under α is a vector called 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥) ,which contains a set of truth 
values of all variables in N(x) under α, i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥) = 𝛼𝛼|𝑁𝑁(𝑥𝑥) , where N(x) is the set of 
neighboring variables of x. 

Applying the concept of configuration to an extension rule, you only need to think of assignment 
α as a maximum term T. 

Definition 5 (configuration checking strategy) [4]: For a SAT local search algorithm solving a 
CNF formula F, if the configuration of the variable x has not been changed (which means none of its 
neighboring variables has been flipped) since it was last selected to flip, then it isn’t allowed to be 
flipped. The above is called configuration checking strategy. 

In the following description, we use conf array to represent a change in the configuration of a 
variable. If the configuration of variable x has been changed, we use conf [x] =1 to indicate it, 
otherwise set conf[x] to 0 [4].  

The algorithm first initializes the whole conf array to 1 for each variable. In every local search 
process, when the variable x is selected to flip, conf[x] is reset to 0, and for each variable y ∈  N(x), 
conf[y] is set to 1[4]. 

In our proposed algorithm, this strategy is not strictly followed. If the configuration of x has not 
been changed, then we use some other strategies to select the variable that will be flipped. 

3. Greedy Local Search and Improvement 
In this part, we will introduce greedy strategies and propose a greedy local search algorithm based 

on extension rule and improve it. 

3.1 Greedy search algorithm under extension rule 
In the algorithm LSER, we don’t give a specific meaning of the Transform function. In fact, it’s 

related to the score of each variable (which is given below) [9]: 
For a formula F and a maximum term T, cost(F, T) represents the total weight of extensible 

clauses under maximum term T. The evaluation function of each variable is defined as Score(x) =
cost(F, T) − cost(F,T′), where T′ is obtained from T by flipping x [9]. In the local search process, 
we try to select variables with highest scores and satisfying conf [v] =1. 

Based on the evaluation function and the configuration checking strategy, it is easy to define the 
local search algorithm in greedy mode. The algorithm is as follows: 

Algorithm Greedy Search under Extension Rule (GSER) [9] 
Input: CNF formula F = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧. . .∧ 𝐶𝐶𝑚𝑚 
      maxTries 
Output: Non-expandable maximum term T = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} or no solution found 
1. attempt ← 0; 
2. T ← initializeMaxTerm(F) 
3. WHILE attempt < maxTries DO 
4.   IF ~CanBeExpand(T, F) THEN RETURN T 
5.   compute P = {v|Score(v) > 0 and conf[v] = 1} 
6.   IF P ≠ ∅ THEN 
7.     x ← v ∈  P with the highest score  
8.     T ← T with x flipped 
9.   ELSE 
10.     use other rules to select the flipped variable x 
11.   attempt++ 
12.   update the configuration of each variable 
13. RETURN "no solution found" 
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3.2 Use subScore-assisted greedy search [4] 

Definition 6 (critical variable): If x ∈  V(C), then x is a critical variable in C, or x is an unrelated 
variable in C. 

The critical variable of a clause is all the variables it contains, and such a variable will really 
determine whether the clause is true or false. 

Obviously, the search direction of the algorithm is to make the value of more clause critical 
variables different from the maximum term. 

We divide the clauses into three categories: extensible, critical and stable. If critical variables of 
the clause are as same as in the maximum term, then it’s extensible. If there is only one critical 
variable that differs from the maximum term, then it’s critical. In other cases, the clause is stable, 
that is, there are at least two of the critical variables that differ from the maximum term. 

For example, T = {x1, x2, ¬x3, ¬x4}, C1 = {x1, x2, x3}, it can be said that C1 is critical in T. 
In the following discussion, we use flag[i] to represent the number of variables in the clause Ci 

that differ from the maximum term under the current maximum term, flag[i] = 0 means that Ci is 
extensible, flag[i]  = 1, indicating that Ci is critical, flag[i] ≥ 2, indicating that Ci is stable. 

With the above definition, we introduce the subScore function as an auxiliary scoring function 
to help in the following situation. In the previous algorithm GSER, there may be a case where there 
are multiple variables satisfying conf[v] = 1 and score(v) are the greatest. At this time, a random 
selection strategy can be enabled, but from the perspective of the whole algorithm, we hope that the 
search direction of the maximum term proceeds along the direction that makes more clauses become 
critical or even stable. Therefore, we use subScore to record this tendency. 

The definition of subScore(v,𝐶𝐶𝑖𝑖) is given as follows: 
Given a maximum term T, if the variable v is flipped, flag[i]  is incremented, then 

subScore(v,𝐶𝐶𝑖𝑖) = 1,if  flag[i] is decreased, then subScore(v,𝐶𝐶𝑖𝑖) = −1. If flag[i] is unchanged, 
then subScore(v,𝐶𝐶𝑖𝑖) = 0. 

It can be seen that when v is not a critical variable of C𝑖𝑖, subScore(v,𝐶𝐶𝑖𝑖) = 0; when v is a 
critical variable of Ci and the value of v in T is different from Ci, flipping it will reduce flag[i], 
subScore(v,𝐶𝐶𝑖𝑖) = −1; subScore(v,𝐶𝐶𝑖𝑖) = 1 when v is a critical variable of Ci and the value of v 
in T is the same as Ci. 

So, the above definition can be written as: 

subScore(v,𝐶𝐶𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧

0, 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖
1, 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖  
𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇, 𝑣𝑣) = 𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖 , 𝑣𝑣)

−1, 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖  
𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇, 𝑣𝑣) ≠ 𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖 , 𝑣𝑣)

                 (1) 

and subScore(v) = ∑ subScore(v, Ci)m
i=1 .                     (2) 

When there are multiple variables with conf[v] = 1 and the same score value, calculate their 
subScore value, flip the subScore maximum variable, if there are multiple subScore maximum 
variables, flipped according to the following strategy.  

3.3 Maximum Score Upper Limit Strategy 
In Algorithm GSER using subScore strategy, there may still be multiple variables with the largest 

Score and subScore. We propose the maximum score upper limit strategy to deal with this situation. 
The basic idea is to assume that the flipped variable is v, and the maximum term after flipping v is T'. 
Calculate the maximum value of Score under T' as the upper limit of Score after flipping v. For each 
variable, calculate the upper limit of the Score after the flip to help select the current variable, that is, 
select the variable flipped with the maximum Score limit. 

Algorithm MaxScoreUpperLimit 
Input: CNF formula F = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧. . .∧ 𝐶𝐶𝑚𝑚 
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Current maximum term T = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} 
Candidate Set S = {𝑥𝑥𝑝𝑝, 𝑥𝑥𝑝𝑝+1, … , 𝑥𝑥𝑞𝑞} 
Output: flipped variable x 
1. max ← 0  x ← 0 
2. FOR 𝑥𝑥𝑖𝑖 in S  DO 
3.   T’ ← T with 𝑥𝑥𝑖𝑖 flipped 
4.   max[𝑥𝑥𝑖𝑖] ← 0 
5.   FOR j ← 1 TO n DO 
6.      compute Score(𝑥𝑥𝑗𝑗) 
7.      IF Score(x𝑗𝑗) > max[𝑥𝑥𝑗𝑗] THEN max[𝑥𝑥𝑗𝑗] ←  Score(x𝑗𝑗) 
8.   IF max[𝑥𝑥𝑖𝑖] > max THEN max ← max[𝑥𝑥𝑖𝑖]   x ← 𝑥𝑥𝑖𝑖 
9. RETURN x 

3.4 Clause weighting strategy [4] 
The previous algorithm is performed when there is always a variable that its configuration is 

satisfied. When there is no variable that satisfies conf [v] =1, the algorithm uses clause weighting 
strategy which is used to update the weight of some clauses. We first increase the weights of 
extensible clauses by one, and then a clause that can be expanded by T is randomly picked, lastly 
select the variable that has not been flipped for the longest time in Ci to flip [4]. 

The framework of the overall algorithm is as follows: 
Algorithm Improved Greedy Search algorithm based on Extension Rules(IGSER) 
Input: CNF formula F = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧. . .∧ 𝐶𝐶𝑚𝑚 
      maxTries 
Output: Non-expandable maximum term T = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} 
or no solution found 
1. attempt ← 0; 
2. T ← initializeMaxTerm(F) 
3. WHILE attempt < maxTries DO 
4.   IF ~CanBeExpand(T, F) THEN RETURN T 
5.   compute P = {v|Score(v) > 0 and conf[v] = 1} 
6.   IF P ≠ ∅ THEN 
7.     compute Q = {v|Score(v) is the highest and v ∈  P} 
8.     IF |Q| = 1 THEN T ← T with x ∈ Q  flipped 
9.     ELSE  
10.       FOR v ∈  P DO  compute the subScore(v) 
11.       compute S = {v|subScore(v) is the highest and v ∈ Q} 
12.       IF |S| = 1 THEN T ← T with x ∈ S flipped 
13.       ELSE x ← MaxScoreUpperLimit(F, T, S) T ← T with x ∈ S flipped 
14.   ELSE 
15.     update the weights of extensible clauses 
16.     x ←the oldest variable in a random extensible clause 
17.   attempt++ 
18.   update the configuration of each variable 
19. RETURN "no solution found" 
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4. Evaluations of IGSER 
In this subsection, we carry out experiments to evaluate the performance of IGSER on random 

3-SAT instances. 

4.1 Benchmarks and experiment preliminaries 

Uniform Random-3-SAT, phase transition region, unforced filtered: 100≤variables≤  200, 
300≤clauses ≤500. All instances used here are CNF formula encoded in DIMACS CNF format. 
This format is supported by most of the solvers provided in the SATLIB Solvers Collection1.  

Random-3-SAT Instances with Controlled Backbone Size: in order to fully test the performance 
of the IGSER, we choose some SAT problems with Controlled Backbone Size instances to test and 
verify the performance of IGSER. 

IGSER is implemented in C++ and compiled by g++. Experiments in this section are run on a 
machine with a 4 cores of 3.0 GHz Intel(R) Core(TM) I5-7400 CPU and 4 GB RAM under Linux 
(Ubuntu 14.4). The cutoff time is set to 10000ms for the Uniform Random-3-SAT and CBS SAT. 
For each instance, each SAT solver is performed 100 times with a cutoff time of 10000ms, and we 
take the average to each of them. 

4.2 Comparing IGSER on random 3-SAT 
Table I presents the results of comparing these algorithms on the random 3-SAT (Comparative 

performance results of IGSER and NER, SER, GSER on the Uniform Random-3-SAT (variables 
=100, clauses=430).  

Table.1. Uniform Random-3-SAT 

Problems Algorithm (CPU Time /ms) 
NER SER GSER IGSER 

Uf100-01 -a 7899 1455 273 
Uf100-02 - - - 422 
Uf100-03 - 8080 1003 501 
Uf100-04 - - - 785 
Uf100-05 - - 1369 1010 
Uf100-06 - - 988 674 
Uf100-07 - - - 795 
Uf100-08 - - 1500 952 
Uf100-09 - - 1678 814 
Uf100-10 - - 1270 378 

a. - means time out. 
GSER shows a substantial improvement over NER and SER on these random 3-SAT instances 

[10-11]. On most instance classes, GSER achieves a higher effectiveness than NER and SER does. 
Table I also indicates that IGSER significantly outperforms GSER in terms of running time. And it 
can success in finding the result on all test cases. So, to great extent it means IGSER has been 
improved from GSER. 

4.3 Comparing IGSER on CBS SAT problems 
Table II presents the results of comparing these algorithms on the CBS SAT problems 

(Comparative performance results of IGSER and NER, SER on the CBS SAT). IGSER shows an 
absolute advantage over NER and SER on these CBS 3-SAT instances. On all instances, IGSER 
achieves a maximum term which meets the requirements, but NER and SER are all time out.  

Table II also indicates that IGSER has the ability to solve different kinds of SAT problems and at 
the same time, it also runs successfully with good performance. 

                                                 
1 https://www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html 
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4.4 The summary of this experiment 
The experiments demonstrate that IGSER consistently outperforms its competitors (NER, SER) 

on both random 3-SAT and CBS SAT instances. And it also shows superiority over GSER, because 
in some solutions GSER only finds the local optima resulting in looping without the real maximum 
term but IGSER can do it by Maximum Score Upper Limit Strategy and subScore-assisted greedy 
search. So IGSER gives the best performance on those 3-SAT instances and CBS SAT instances.  

5. Conclusion and Future Work 
This paper proposes a new extension rule method (IGSER) based on greedy local search. 

Experiments show that the proposed algorithm outperforms the general extension rule inference 
method and algorithm GSER on 3-SAT and CBS SAT instances. In future work, we will continue to 
improve the effectiveness of our algorithm. And we can parallelize the algorithm to improve the 
efficiency of the SAT problems. 

Table.2. Cbs Sat Problems 

Problems Algorithm (CPU Time /ms) 
NER SER IGSER 

CBS_k3_n100_m403_b10_0 -a - 143 
CBS_k3_n100_m403_b10_1 - - 193 
CBS_k3_n100_m403_b10_2 - - 140 
CBS_k3_n100_m403_b10_3 - - 560 
CBS_k3_n100_m403_b10_4 - - 193 
CBS_k3_n100_m403_b10_5 - - 2082 
CBS_k3_n100_m403_b10_6 - - 588 
CBS_k3_n100_m403_b10_7 - - 349 
CBS_k3_n100_m403_b10_8 - - 480 
CBS_k3_n100_m403_b10_9 - - 671 

a. - means time out. 

References 
[1] Selman B, Levesque H J, Mitchell D G, “A new method for solving hard satisfiability problems,” 
Proceedings of the 10th National Conference on Artificial Intelligence. San Jose, USA, 1992, pp. 
440-446. 
[2] Cai S W, Su K L, “Local search with configuration checking for SAT,” Proceedings of the 23rd 
IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, USA, 2001, 
pp.59-66. 
[3] Cai S W, Su K L, “Configuration checking with aspiration in local search for SAT,” 
Proceedings of the 26th AAAI Conference on Artificial Intelligence and the 24th Innovative 
Applications of Artificial Intelligence Conference, Toronto, Canada, 2012, 1: 434-440. 
[4] Cai S W, Su K L, “Local search for Boolean Satisfiability with configuration checking and 
subscore,” Artificial Intelligence, 2013, 204: 75-98. 
[5] Cai S W, Luo C, Su K L, “Scoring functions based on second level score for k-SAT with long 
clauses,” Journal of Artificial Intelligence Research, 2014, 51: 413-441. 
[6] Cai S W, Luo C, Su K L, “CCAnr: A configuration checking based local search solver for 
non-random satisfiability,” Proceedings of the 18th International Conference on Theory and 
Applications of Satisfiability Testing, Austin, TX, USA, 2015, pp.1-8. 

495



  

 

 

[7] Luo C, Cai S W, Wu W, Su K L, “Clause states based configuration checking in local search for 
satisfiability,” IEEE Transactions on Cybernetics, 2015,45 (5): 1014-1027. 
[8] Lin H, Sun J G, Zhang Y M, “Theorem proving based on the extension rule,” Journal of 
Automated Reasoning, 2003, 31 (1): 11-21. 
[9] Yang Y, Liu L, Li G L, Zhang T B, Lü S, “A novel local search-based extension rule reasoning 
method,” Journal of Computers, 2018, 41 (4): 825-839 (in Chinese) 
[10] Sun J G, Li Y, Zhu X J, Lü S. “A novel theorem proving algorithm based on extension rule,” 
Journal of Computer Research and Development, 2009, 46 (1): 9-14 (in Chinese) 
[11] Zhang L M, Ouyang D T, Bai H T, “Theorem proving algorithm based on semi-Extension rule,” 
Journal of Computer Research and Development, 2010, 47 (9): 1522-1529 (in Chinese) 

496


	1. Introduction
	2. Preliminaries
	3. Greedy Local Search and Improvement
	4. Evaluations of IGSER
	5. Conclusion and Future Work
	References



